Tracking and sensor-based detection of livestock water system failure: A case study simulation
Colin Tobin, Derek W. Bailey and Mark G. Trotter
In: Rangeland Ecology and Management 2021 77, 9-16
Summary
Water is an important nutrient, and its continuous provision is a critical welfare issue for cattle grazing arid and semiarid rangelands. Time and labor are needed to monitor water availability, and automated monitoring systems are a costly input on expansive rangeland pastures. The objective of this study was to evaluate the potential of detecting water system failures using Global Positioning System (GPS) tracking and accelerometers, assuming the data could be monitored in real or near-real time. Water system failure was simulated in a 1 096-ha pasture in Arizona by placing metal panels around the only drinker for 4 h (0800−1200) on three occasions in 2018 and two occasions in 2019. Randomly selected cows (10 in 2018 and 23 in 2019) of the 120 cows in the pasture were tracked with GPS collars, and 7 (2018) and 10 (2019) of the tracked cows were fitted with triaxial accelerometers. Movement intensity measured by accelerometers was greater (P = 0.03) on the day of simulated water failure than on control days with available water. During simulated water failure, cows remained closer to water (P = 0.01) after approaching the drinker (< 150 m) compared with the control period the day prior. Cows typically went to the drinker, drank, and then traveled away from the drinker and rested. On simulated water-failure days, cows remained near the drinker (< 150 m from the tank) until the panels were removed and they could drink. Real-time GPS tracking with or without accelerometer data has the potential to remotely detect water system failure, which could reduce the time for managers to repair the water system and improve cattle well-being.
In: Rangeland Ecology and Management 2021 77, 9-16
Summary
Water is an important nutrient, and its continuous provision is a critical welfare issue for cattle grazing arid and semiarid rangelands. Time and labor are needed to monitor water availability, and automated monitoring systems are a costly input on expansive rangeland pastures. The objective of this study was to evaluate the potential of detecting water system failures using Global Positioning System (GPS) tracking and accelerometers, assuming the data could be monitored in real or near-real time. Water system failure was simulated in a 1 096-ha pasture in Arizona by placing metal panels around the only drinker for 4 h (0800−1200) on three occasions in 2018 and two occasions in 2019. Randomly selected cows (10 in 2018 and 23 in 2019) of the 120 cows in the pasture were tracked with GPS collars, and 7 (2018) and 10 (2019) of the tracked cows were fitted with triaxial accelerometers. Movement intensity measured by accelerometers was greater (P = 0.03) on the day of simulated water failure than on control days with available water. During simulated water failure, cows remained closer to water (P = 0.01) after approaching the drinker (< 150 m) compared with the control period the day prior. Cows typically went to the drinker, drank, and then traveled away from the drinker and rested. On simulated water-failure days, cows remained near the drinker (< 150 m from the tank) until the panels were removed and they could drink. Real-time GPS tracking with or without accelerometer data has the potential to remotely detect water system failure, which could reduce the time for managers to repair the water system and improve cattle well-being.
Download the paper:
Temporal changes in association patterns of cattle grazing at two stocking densities in a central Arizona rangeland
:Colin T. Tobin, Derek W. Bailey, Mitchell B. Stephenson and Mark G. Trotter
In: Animals 2021, 11(9), 2635
Summary
Monitoring changes in the utilization of forages across rangelands can be time consuming and difficult with untrained personnel. The use of real time positioning for cattle is becoming commercially available with the improvements in technology. The objective of this case study was to identify the changes in livestock social associations and spatial location at two stocking densities throughout a six-week grazing period. Both pastures used similar sized herds with 35 and 29 animals tracked with global positioning systems set at 30-min intervals. A half-weight index value was calculated for each pair of tracked cattle to determine the proportion of time that cattle were within 75 m and 500 m of each other. Throughout the study, forage utilization increased from 5 to 24% and from 10% to 20% and forage mass decreased from 2601 kg ha−1 to 1828 kg ha−1 and 2343 kg ha−1 to 1904 kg ha−1, in the high stocking density pasture and low stocking density pasture, respectively. Utilization of forages throughout the trial forced cattle to disperse and travel further from water sources to find new feeds. Real-time GPS tracking has the potential to remotely detect changes in animal spatial association, identify when cows disperse, and improve recognition for the need of pasture rotation to avoid rangeland degradation
Download the paper:
In: Animals 2021, 11(9), 2635
Summary
Monitoring changes in the utilization of forages across rangelands can be time consuming and difficult with untrained personnel. The use of real time positioning for cattle is becoming commercially available with the improvements in technology. The objective of this case study was to identify the changes in livestock social associations and spatial location at two stocking densities throughout a six-week grazing period. Both pastures used similar sized herds with 35 and 29 animals tracked with global positioning systems set at 30-min intervals. A half-weight index value was calculated for each pair of tracked cattle to determine the proportion of time that cattle were within 75 m and 500 m of each other. Throughout the study, forage utilization increased from 5 to 24% and from 10% to 20% and forage mass decreased from 2601 kg ha−1 to 1828 kg ha−1 and 2343 kg ha−1 to 1904 kg ha−1, in the high stocking density pasture and low stocking density pasture, respectively. Utilization of forages throughout the trial forced cattle to disperse and travel further from water sources to find new feeds. Real-time GPS tracking has the potential to remotely detect changes in animal spatial association, identify when cows disperse, and improve recognition for the need of pasture rotation to avoid rangeland degradation
Download the paper:
Opportunities to apply precision livestock management on rangelands
:Derek W. Bailey, Mark G. Trotter, Colin Tobin and Milt G. Thomas
In: Frontiers in Sustainable Food Systems 2021 5(93), 611915
Summary
Precision livestock management has become a new field of study as the result of recent advancements in real-time global positioning system (GPS) tracking, accelerometer and other sensor technologies. Real-time tracking and accelerometer monitoring has the potential to remotely detect livestock disease, animal well-being and grazing distribution issues and notify ranchers and graziers so that they can respond as soon as possible. On-going research has shown that accelerometers can remotely monitor livestock behavior and detect activity changes that are associated with disease and parturition. GPS tracking can also detect parturition by monitoring the distance between a ewe and the remainder of the flock. Tracking also has the potential to detect water system failures. Combinations of GPS tracking and accelerometer monitoring may be more accurate than either device used by itself. Real-time GPS tracking can identify when livestock congregate in environmental sensitive areas which may allow managers the chance to respond before resource degradation occurs. Identification of genetic markers associated with terrain use, decreased cost of GPS tracking and novel tracking data processing should facilitate development of tools needed for genetic selection for cattle grazing distribution. Precision livestock management has potential to improve welfare of livestock grazing rangelands and forested lands, reduce labor costs and improve ranch profitability and improve the condition and sustainability of riparian areas and other environmental sensitive areas on grazing lands around the world.
Download the paper:
In: Frontiers in Sustainable Food Systems 2021 5(93), 611915
Summary
Precision livestock management has become a new field of study as the result of recent advancements in real-time global positioning system (GPS) tracking, accelerometer and other sensor technologies. Real-time tracking and accelerometer monitoring has the potential to remotely detect livestock disease, animal well-being and grazing distribution issues and notify ranchers and graziers so that they can respond as soon as possible. On-going research has shown that accelerometers can remotely monitor livestock behavior and detect activity changes that are associated with disease and parturition. GPS tracking can also detect parturition by monitoring the distance between a ewe and the remainder of the flock. Tracking also has the potential to detect water system failures. Combinations of GPS tracking and accelerometer monitoring may be more accurate than either device used by itself. Real-time GPS tracking can identify when livestock congregate in environmental sensitive areas which may allow managers the chance to respond before resource degradation occurs. Identification of genetic markers associated with terrain use, decreased cost of GPS tracking and novel tracking data processing should facilitate development of tools needed for genetic selection for cattle grazing distribution. Precision livestock management has potential to improve welfare of livestock grazing rangelands and forested lands, reduce labor costs and improve ranch profitability and improve the condition and sustainability of riparian areas and other environmental sensitive areas on grazing lands around the world.
Download the paper: